J Interdiscip Dentistry
Home | About JID | Editors | Search | Ahead of print | Current Issue | Archives | Instructions |
Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Users Online: 270  | Login  | Contact us | Advertise | Subscribe  
Year : 2020  |  Volume : 10  |  Issue : 1  |  Page : 24-28

In vitro assessment of cytotoxicity and anti-inflammatory properties of shilajit nutraceutical: A preliminary study

Department of Conservative Dentistry and Endodontics, SRM Dental College, Chennai, Tamil Nadu, India

Correspondence Address:
Dr. Saravanakarthikeyan Balasubramanian
Department of Conservative Dentistry and Endodontics, SRM Dental College, Bharathi Salai, Ramapuram, Chennai - 600 089, Tamil Nadu
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jid.jid_2_20

Rights and Permissions

Background: Shilajit is a nutraceutical exudate found mainly in the Indian Himalayas, which is formed for centuries by the gradual decomposition of certain plants due to microbial action. It has been effectively used as a potent and safe dietary supplement, restoring the energetic balance and potentially able to prevent several diseases. Hence, the aim of the present preliminary in vitro study is to assess the cytotoxicity of shilajit extract and to comparatively evaluate the anti-inflammatory effect of shilajit and diclofenac sodium, a commonly used drug. Materials and Methodology: Shilajit was commercially procured in pure powder form which was dissolved in 10 ml of methanol and boiled for 80 min, followed by centrifugation (2500 rpm) for 10 min. The supernatant fluid thus obtained was used as an experimental solution. 25-mg diclofenac sodium was used as a control drug. The cytotoxicity of shilajit extract was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, whereas the anti-inflammatory property of the test groups was comparatively evaluated using protein denaturation assay. Results: As the dilution of the extracts increased, the amount of cell viability was also increased, thereby showing that the diluted shilajit extract concentrations proved to be least cytotoxic. Different percentages of shilajit exhibited concentration-dependent inhibition of protein denaturation. Although shilajit extract exerted marginally better anti-inflammatory effect than diclofenac sodium, the effect being dose dependent; the protein inhibition values were not statistically significant (P > 0.05). Conclusion: Within the limitations of this in vitro preliminary study, it can be concluded that: (i) shilajit extract was found to be nontoxic when tested on L929 mouse fibroblast cell lines and (ii) the anti-inflammatory effect of shilajit was comparable to that of diclofenac sodium. Hence, this nutraceutical can be a viable alternative to conventional anti-inflammatory drugs in the field of medicine and dentistry.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded251    
    Comments [Add]    
    Cited by others 2    

Recommend this journal