Assessment of marginal fit, ceramometal shear bond strength, and fractographic analysis of sinter cast gold: An In vitro study
Hetal Turakhia1, Sabita M Ram2, Aruna Mehta3, Bhushan R Bangar4, Abhishek Singh Nayyar5
1 Department of Prosthodontics and Crown and Bridge, Saraswati-Dhanwantari Dental College and Hospital and Post-Graduate Research Institute, Parbhani, Maharashtra, India 2 Department of Prosthodontics and Crown and Bridge, MGM Dental College and Hospital, Navi Mumbai, Maharashtra, India 3 Department of Prosthodontics and Crown and Bridge, Dr. DY Patil Dental College and Hospital, Navi Mumbai, Maharashtra, India 4 Department of Prosthodontics and Crown and Bridge, Maharasthra Institute of Dental Sciences and Research, Latur, Maharashtra, India 5 Department of Oral Medicine and Radiology, Saraswati-Dhanwantari Dental College and Hospital and Post-Graduate Research Institute, Parbhani, Maharashtra, India
Correspondence Address:
Abhishek Singh Nayyar 44, Behind Singla Nursing Home, New Friends Colony, Model Town, Panipat - 132 103, Haryana India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/jid.jid_55_16
|
Introduction: Fractographic analysis is performed by observing, measuring, and interpreting the fracture surface topography that can determine many features of the microstructure of materials and the mechanics of the fracture. This study was planned to put through investigation, marginal fit and ceramo-metal shear bond strength with fractographic analysis of the debonded surfaces. The aim of this study was to assess the marginal fit, ceramo-metal shear bond strength of sinter cast gold and to analyze the debonded sample by fractography. Materials and Methods: A total of 5 sinter cast gold copings were prepared on a stainless master die resembling a maxillary 1st pre-molar to receive a ceramo-metal restoration. Each of the copings were, then, assessed for marginal fit before and after ceramic firing. Also, a total of 5 ceramo-metal discs were fabricated for testing shear bond strength at the metal-ceramic interface. The samples were subjected to increasing shear load on a Universal Testing Machine with crosshead speed of 0.002mm/sec. The load at which, the samples debonded completely, was noted and the samples put-to fractographic analysis. Results: The mean marginal fit found in this study for sinter cast gold before ceramic firing was measured to be 11.5 μm with a standard deviation of ±4.64 μm and after ceramic firing was found to be 9.38 μm with a standard deviation of ±3.57 μm. The average shear bond strength at the sinter cast gold ceramic interface was 18.216 MPa. The fractographic analysis showed the globular microstructure of sinter cast gold on sintering, adhesive, and mix-mode type of fracture with the presence of both gold and ceramic. Conclusion: The marginal fit observed before and after ceramic firing was within clinically acceptable range while the ceramo-metal shear bond strength between sinter cast gold and ceramic was found to be inadequate. |